
I2S (2.0.1)

I2S/TDM Library
A software library that allows you to control an I2S or TDM (time division multiplexed) bus via xCORE
ports. I2S and TDM are digital data streaming interface particularly appropriate for transmission of audio
data. The components in the libary are controlled via C using the XMOS multicore extensions (xC) and
can either act as I2S master, TDM master or I2S slave.

Features

• I2S master, TDM master and I2S slave modes.
• Handles multiple input and output data lines.
• Support for standard I2S, left justified or right justified data modes for I2S.
• Support for multiple formats of TDM synchronization signal.
• Sample rate support up to 192KHz.
• Up to 32 channels in/32 channels out (depending on sample rate)

Resource Usage

This following table shows typical resource usage in some different configurations. Exact resource usage
will depend on the particular use of the library by the application.

Configuration Pins Ports Clocks Ram Logical cores

I2S Master 3 + data lines 3 x (1-bit) + data lines 2 ~1.8K 1

I2S Slave 2 + data lines 2 x (1-bit) + data lines 1 ~1.3K 1

TDM Master 2 + data lines 2 x (1-bit) + data lines 1 ~1.6K 1

Software version and dependencies

This document pertains to version 2.0.1 of this library. It is known to work on version 14.0.2 of the
xTIMEcomposer tools suite, it may work on other versions.

This library depends on the following other libraries:

• lib_logging (>=2.0.0) • lib_xassert (>=2.0.0)

Related application notes

The following application notes use this library:

• AN00162 - Using the I2S library

Copyright 2015 XMOS Ltd. 1 www.xmos.com
XM007055



I2S (2.0.1)

1 External signal description

1.1 I2S

I2S is a protocol between two devices where one is the master and one is the slave . The protocol is made
up of four signals shown in Table 1.

MCLK Clock line, driven by external oscillator

BCLK Bit clock. This is a fixed divide of the MCLK and is driven by the master.

LRCLK (or WCLK) Word clock (or word select). This is driven by the master.

DATA Data line, driven by one of the slave or master depending on the data direction.
There may be several data lines in differing directions.

Table 1: I2S data wires

The configuration of an I2S signal depends on the parameters shown in Table 2.

MCLK_BCLK_RATIO The fixed ratio between the master clock and the bit clock.

MODE The mode - either I2S or left justified.

Table 2: I2S configuration parameters

The MCLK_BCLK_RATIO should be such that 64 bits can be output by the bit clock at the data rate of the
I2S signal. For example, a 24.576MHz master clock with a ratio of 8 gives a bit clock at 3.072MHz. This
bit clock can output 64 bits at a frequency of 48Khz - which is the underlying rate of the data.

The master signals data transfer should occur by a transition on the LRCLK wire. There are two supported
modes for I2S. In I2S mode (shown in Figure 1) data is transferred on the second falling edge after the
LRCLK transitions.

Figure 1: I2S Mode

Copyright 2015 XMOS Ltd. 2 www.xmos.com
XM007055



I2S (2.0.1)

In Left Justified Mode (shown in Figure 2) the data is transferred on the next falling edge after the LRCLK
transition.

Figure 2: Left Justified Mode

In either case the signal multiplexes two channels of data onto one data line. When the LRCLK is low, the
left channel is transmitted. When the LRCLK is high, the right channel is transmitted.

All data is transmitted most significant bit first. The xCORE I2S library assumes 32 bits of data between
LRCLK transitions. How the data is aligned is expeced to be done in software by the application. For
example, some audio codecs have a Right Justified mode; to attain this mode the library should be set to
Left Justified mode to align the LRCLK signal and then the data should be right shifted by the application
before being passed to the library.

1.1.1 Connecting I2S signals to the xCORE device

The i2s wires need to be connected to the xCORE device as shown in Figure 3 and Figure 4. The signals
can be connected to any one bit ports on the device provide they do not overlap any other used ports and
are all on the same tile.

xCORE device

BCLK1 bit
port

DOUT[0]1 bit
port

DOUT[num_out-1]1 bit
port

DIN[0]1 bit
port

DIN[num_in-1]1 bit
port

LRCLK1 bit
port

...

...

MCLK1 bit
port

Figure 3: I2S connection to the xCORE device (xCORE as I2S master)

xCORE device

BCLK1 bit
port

DOUT[0]1 bit
port

DOUT[num_out-1]1 bit
port

DIN[0]1 bit
port

DIN[num_in-1]1 bit
port

LRCLK1 bit
port

...

...

Figure 4: I2S connection to the xCORE device (xCORE as I2S slave)

If only one data direction is required then the DOUT or DIN lines need not be connected.

Copyright 2015 XMOS Ltd. 3 www.xmos.com
XM007055



I2S (2.0.1)

1.1.2 I2S master speeds and performance

The speed and number of data wires that can be driven by the I2S library running as I2S master depends
on the speed of the logical core that runs the code and the amount of processing that occurs in the user
callbacks for handling the data from the library. Table 3 and Table 4 show configurations that are known
to work for small amounts of callback processing. Other speeds will be acheivable depending on the
amount of processing in the application and the logical core speed.

MCLK FREQ MCLK/BCLK
RATIO

SAMPLE FREQ NUM IN (num
channels)

NUM OUT (num
channels)

24.576MHz 2 192000 1 (2) 1 (2)

24.576MHz 4 96000 2 (4) 2 (4)

24.576MHz 8 48000 4 (8) 4 (8)

12.288MHz 2 96000 2 (4) 2 (4)

12.288MHz 4 48000 4 (8) 4 (8)

Table 3: Known working I2S master configurations on a 62.5MHz core

MCLK FREQ MCLK/BCLK
RATIO

SAMPLE FREQ NUM IN (num
channels)

NUM OUT (num
channels)

24.576MHz 2 192000 2 (4) 2 (4)

24.576MHz 4 96000 4 (8) 4 (8)

12.288MHz 2 96000 4 (8) 4 (8)

Table 4: Known working I2S master configurations on a 83.3MHz core

1.1.3 I2S slave speeds and performance

The speed and number of data wires that can be driven by the I2S library running as slave depends on the
speed of the logical core hat runs the code and the amount of processing that occurs in the user callbacks
for handling the data from the library. Table 5 shows configurations that are known to work for small
amounts of callback processing. Other speeds will be acheivable depending on the amount of processing
in the application and the logical core speed. Note that the when acting as slave the performance of the
library only depends on the bit clock frequency, not the underlying master clock frequency.

BCLK FREQU SAMPLE FREQ NUM IN (num channels) NUM OUT (num channels)

12.288MHz 192000 4 (8) 4 (8)

Table 5: Known working I2S slave configurations on a 62.5MHz core

Copyright 2015 XMOS Ltd. 4 www.xmos.com
XM007055



I2S (2.0.1)

1.2 TDM

TDM is a protocol that multiplexes several signals onto one wire. It is a protocol between two devices
where one is the master and one is the slave . The protocol is made up of three signals shown in Table 6.

BCLK Bit clock line, driven by external oscillator.

FSYNC The frame sync line. This is driven by the master.

DATA Data line, driven by one of the slave or master depending on the data direction. There may
be several data lines in differing directions.

Table 6: TDM data wires

Unlike I2S, the bit clock is not a divide of an underlying master clock.

The configuration of a TDM signal depends on the parameters shown in Table 7.

CHANNELS_PER_FRAME The number of channels multiplexed into a frame on the data line.

FSYNC_OFFSET The number of bits between the frame sync signal transitioning an data
being drive on the data line.

FSYNC_LENGTH The number of bits that the frame sync signal stays high for when signalling
frame start.

Table 7: TDM configuration parameters

Figure 5 and Figure 6 show example waveforms for TDM with different offset and sync length values.

Figure 5: TDM signal (sync offset 0, sync length 1)

Figure 6: TDM signal (sync offset 1, sync length 32)

The master signals a frame by driving the FSYNC signal high. After a delay of FSYNC_OFFSET bits, data
is driven. Data is driven most significant bit first. First, 32 bits of data from Channel 0 is driven, then 32
bits from channel 1 up to channel N (when N is the number of channels per frame). The next frame is
then signalled (there is no padding between frames).

Copyright 2015 XMOS Ltd. 5 www.xmos.com
XM007055



I2S (2.0.1)

1.2.1 Connecting TDM signals to the xCORE device

The TDM wires need to be connected to the xCORE device as shown in Figure 7. The signals can be
connected to any one bit ports on the device provide they do not overlap any other used ports and are all
on the same tile.

xCORE device

BCLK1 bit
port

DOUT[0]1 bit
port

DOUT[num_out-1]1 bit
port

DIN[0]1 bit
port

DIN[num_in-1]1 bit
port

FSYNC1 bit
port

...

...

Figure 7: TDM connection to the xCORE device

If only one data direction is required then the DOUT or DIN lines need not be connected.

1.2.2 TDM speeds and performance

The speed and number of data wires that can be driven by the I2S library running as TDM master depends
on the speed of the logical core that runs the code and the amount of processing that occurs in the user
callbacks for handling the data from the library. Table 8 show configurations that are known to work
for small amounts of callback processing. Other speeds will be acheivable depending on the amount of
processing in the application and the logical core speed.

BCLK FREQ CHANNELS PER
FRAME

SAMPLE FREQ NUM IN (num
channels)

NUM OUT (num
channels)

12.288MHz 8 48000 2 (16) 2 (16)

6.144MHz 4 48000 4 (16) 4 (16)

Table 8: Known working TDM configurations on a 62.5MHz core

Copyright 2015 XMOS Ltd. 6 www.xmos.com
XM007055



I2S (2.0.1)

1.3 Combined I2S and TDM

The library can drive synchronized I2S master and TDM signals from a single logical core. In this case, the
MCLK of the I2S interface is the same as the BCLK of the TDM master. The sample rate must be the same.
This implies that the TDM channels per frame must be equal to the twice the MCLK/BCLK ratio.

1.3.1 Connecting synchronized I2S and TDM signals to the xCORE device

The I2S_TDM wires need to be connected to the xCORE device as shown in Figure 8. The signals can be
connected to any one bit ports on the device provide they do not overlap any other used ports and are all
on the same tile.

xCORE device
I2S_BCLK1 bit

port

I2S_DOUT[0]1 bit
port

I2S_DOUT[num_out-1]1 bit
port

I2S_DIN[0]1 bit
port

I2S_DIN[num_in-1]1 bit
port

I2S_LRCLK1 bit
port

...

...

I2S_MCLK/TDM_BCLK1 bit
port

1 bit
port

1 bit
port

1 bit
port

1 bit
port

1 bit
port

1 bit
port

...

1 bit
port

1 bit
port

1 bit
port

1 bit
port

1 bit
port

1 bit
port

1 bit
port

1 bit
port

1 bit
port

1 bit
port

1 bit
port

TDM_DOUT[0]

TDM_DOUT[num_out-1]

TDM_DIN[0]

TDM_DIN[num_in-1]

TDM_FSYNC

...

...

Figure 8: I2S + TDM connection to the xCORE device

If only one data direction is required then the DOUT or DIN lines need not be connected.

1.3.2 Combined I2S and TDM speeds and performance

The speed and number of data wires that can be driven by the library running combined I2S master and
TDM depends on the speed of the logical core that runs the code and the amount of processing that
occurs in the user callbacks for handling the data from the library. Table 9 show configurations that are
known to work for small amounts of callback processing. Other speeds will be acheivable depending on
the amount of processing in the application and the logical core speed.

MCLK FREQ MCLK/BCLK
RATIO

SAMPLE FREQ CHANNELS
PER TDM
FRAME

I2S IN/OUT
(channels
in/out)

TDM IN/OUT
(channels in-
/out)

12.288MHz 4 48000 8 4/4 (8/8) 1/1 (8/8)

Table 9: Known working I2S + TDM configurations on a 62.5MHz core

Copyright 2015 XMOS Ltd. 7 www.xmos.com
XM007055



I2S (2.0.1)

2 Usage

All I2S functions can be accessed via the i2s.h header:

#include <i2s.h>

You will also have to add lib_i2s to the USED_MODULES field of your application Makefile.

2.1 The I2S callback interface

All major functions in the I2S library work by controlling the I2S or TDM bus on its own logical core on an
xCORE device. The library will then make callbacks to the application when it receives a sample or needs
to send a sample.

I2S or
TDM
task

I2S or
TDM
task

appapp
i2s_callback_if

Figure 9: I2S callback usage

The callbacks are implemented by the application providing a task which receives requests on the
i2s_callback_if xC interface. The application tasks can run the callbacks on the same logical core by
implementing a distributable task. More information on interfaces and tasks can be be found in the
XMOS Programming Guide (see XM-004440-PC).

A template application task is shown below. The specific contents of each callback will depend on the
application:

[[distributable]]
void my_application(server i2s_callback_if i2s) {
while (1) {
select {
case i2s.init(i2s_config_t &?i2s_config, tdm_config_t &?tdm_config):
i2s_config.mclk_to_bclk_ratio = 2;
i2c_config.mode = I2S_MODE_LEFT_JUSTIFIED;
...
break;

case i2s.restart_check() -> i2s_restart_t restart:
...
break;

case i2s.receive(size_t index, int32_t sample):
...
break;

case i2s.send(size_t index) -> int32_t sample:
...
break;

}
}

The send/receive callbacks pass a channel index parameter to the application. This channel maps to the

Copyright 2015 XMOS Ltd. 8 www.xmos.com
XM007055

http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide


I2S (2.0.1)

data signals as shown in §2.6.

The initialization callback will provide configuration structures relevant to the communication bus being
used. The application can set the parameters of the bus (MCLK/BCLK ratio, LRCLK alignment etc.) at this
point.

2.2 I2S master usage

The I2S master task is instantiated as a parallel task that run in a par statement. The application can
connect via the i2s_callback_if interface connection. For example, the following code instantiates an
I2S master component and connects to it:

out buffered port:32 p_dout[2] = {XS1_PORT_1D, XS1_PORT_1E};
in buffered port:32 p_din[2] = {XS1_PORT_1I, XS1_PORT_1K};
port p_mclk = XS1_PORT_1M;
out buffered port:32 p_bclk = XS1_PORT_1A;
out buffered port:32 p_lrclk = XS1_PORT_1C;

clock mclk = XS1_CLKBLK_1;
clock bclk = XS1_CLKBLK_2;

int main(void) {
i2s_callback_if i_i2s;
configure_clock_src(mclk, p_mclk);
start_clock(mclk);
par {
i2s_master(i_i2s, p_dout, 2, p_din, 2,

p_bclk, p_lrclk, bclk, mclk);
my_application(i_i2s);

}
return 0;

}

2.3 I2S slave usage

The I2S slave task is instantiated as a parallel task that run in a par statement. The application can
connect via the i2s_callback_if interface connection. For example, the following code instantiates an
I2S slave component and connects to it:

out buffered port:32 p_dout[2] = {XS1_PORT_1D, XS1_PORT_1E};
in buffered port:32 p_din[2] = {XS1_PORT_1I, XS1_PORT_1K};
in port p_bclk = XS1_PORT_1A;
in port p_lrclk = XS1_PORT_1C;

clock bclk = XS1_CLKBLK_1;

int main(void) {
par {
i2s_slave(i2s_i, p_dout, 2, p_din, 2,

p_bclk, p_lrclk, bclk);
my_application(i_i2s);

}
return 0;

}

Copyright 2015 XMOS Ltd. 9 www.xmos.com
XM007055



I2S (2.0.1)

2.4 TDM usage

The TDM master task is instantiated as a parallel task that run in a par statement. The application can
connect via the i2s_callback_if interface connection. For example, the following code instantiates an
TDM master component and connects to it:

out buffered port:32 p_dout[2] = {XS1_PORT_1D, XS1_PORT_1E};
in buffered port:32 p_din[2] = {XS1_PORT_1I, XS1_PORT_1K};
in port p_bclk = XS1_PORT_1A;
out buffered port:32 p_fsync = XS1_PORT_1C;

clock bclk = XS1_CLKBLK_1;

int main(void) {
i2s_callback_if i_i2s;
configure_clock_src(bclk, p_bclk);
par {
tdm_master(i2s_i, p_fsync, p_dout, 2, p_din, 2, bclk);
my_application(i_i2s);

}
return 0;

}

2.5 I2S + TDM usage

You can run TDM and I2S master on one core via a task that is instantiated in a par statement. The
application can connect via the i2s_callback_if interface connection. For example, the following code
instantiates an I2S + TDM master component and connects to it:

out buffered port:32 p_i2s_dout[2] = {XS1_PORT_1B, XS1_PORT_1F};
in buffered port:32 p_i2s_din[2] = {XS1_PORT_1G, XS1_PORT_1H};
out buffered port:32 p_tdm_dout[1] = {XS1_PORT_1D};
in buffered port:32 p_tdm_din[1] = {XS1_PORT_1I};
in port p_mclk = XS1_PORT_1A;
out buffered port:32 p_fsync = XS1_PORT_1C;
out buffered port:32 p_bclk = XS1_PORT_1E;
out buffered port:32 p_lrclk = XS1_PORT_1K;
clock bclk = XS1_CLKBLK_1;
clock mclk = XS1_CLKBLK_2;

int main(void) {
i2s_callback_if i_i2s;
configure_clock_src(mclk, p_mclk);
start_clock(mclk);
par {
i2s_tdm_master(i2s_i, p_i2s_dout, 2, p_i2s_din, 2,

p_bclk, p_lrclk, p_fsync,
tdm_dout, 1, tdm_din, 1,
bclk, mclk);

my_application(i_i2s);
}
return 0;

}

Copyright 2015 XMOS Ltd. 10 www.xmos.com
XM007055



I2S (2.0.1)

2.6 Channel numbering

The callback interface numbers the channels being sent/received for the send and receive callbacks.
There is a fixed mapping from these channel indices to the physical interface begin used.

2.6.1 I2S channel numbering

The data words within I2S frames have even channel numbers assigned to the left samples (first within
the frame) and odd numbers assigned to the right (second within the frame) samples.

The actual sample number will be given with respect to the order that the ports are provided in the data
in and data out array arguments to the component.

For example, in a system with 4 data out ports and 4 data in ports declared as:

out buffered port:32 p_dout[4] = {XS1_PORT_1A, XS1_PORT_1B, XS1_PORT_1C, XS1_PORT_1D};
in buffered port:32 p_din[4] = {XS1_PORT_1E, XS1_PORT_1F, XS1_PORT_1G, XS1_PORT_1H};

The channels wil be numbered as indicated in Figure 10:

Figure 10: I2S channel numbering

Copyright 2015 XMOS Ltd. 11 www.xmos.com
XM007055



I2S (2.0.1)

2.6.2 TDM channel numbering

The data words within TDM frames are assigned sequentially from the start of the frame. Each data line
will have its channel numbers assigned in the order that the ports are provided in the data in and data
out array arguments to the component.

For example, in a system with 2 data out ports and 2 data in ports declared as:

out buffered port:32 p_dout[2] = {XS1_PORT_1A, XS1_PORT_1B};
in buffered port:32 p_din[2] = {XS1_PORT_1E, XS1_PORT_1F};

With the number of channels per frame as 4, the samples will be numbered as indicated in Figure 11:

Figure 11: TDM channel numbering

2.6.3 I2S and TDM combined numbering

When using the I2S/TDM combined task the TDM channels are numbered after the I2S channels using the
numbering system described in the previous two sections.

2.7 Callback sequences

The send/receive callbacks of I2S callbacks occur in a pre-determined order. The seqeunce consists of
receipt of all even channel, sending of all even channels, receipt of all odd channels and then sending of
all odd channels.

Since the hardware port buffers within the xCORE device there is an initial sequences of sends after
initialization. Similarly there is a final sequences of receives after a restart/shutdown request. Table 10
shows an example sequence of callbacks for two output lines and two input lines (four channels in and
four channels out).

Initial send: S0 S2 S1 S3

Frame: R0 R2 S0 S2 R1 R3 S1 S3

Frame: R0 R2 S0 S2 R1 R3 S1 S3

... ...

Frame: R0 R2 S0 S2 R1 R3 S1 S3

Final receive: R0 R2 R1 R3

Table 10: Sample I2S callback sequence

Copyright 2015 XMOS Ltd. 12 www.xmos.com
XM007055



I2S (2.0.1)

When using TDM, the receive callbacks for a channel occur after the send callbacks. The receive callback
for the last channel of the frame will occur after the send callback for the next frame. After a restart
request a tail of receive callbacks for the last channel of the final frame will occur. Table 11 shows an
example TDM callback sequence for two data lines in and out with four channels per frame.

S0 S4 S1 S5 R0 R4 S2 S6 R1 R5 S3 S7 R2 R6

S0 S4 R3 R7 S1 S5 R0 R4 S2 S6 R1 R5 S3 S7 R2 R6

...

S0 S4 R3 R7 S1 S5 R0 R4 S2 S6 R1 R5 S3 S7 R2 R6

S0 S4 R3 R7 S1 S5 R0 R4 S2 S6 R1 R5 S3 S7 R2 R6

R3 R7

Table 11: Sample TDM callback sequence

In both cases the components attempt to distribute the calling of the callbacks evenly within the frame to
allow processing to occur throughout the frame evenly.

The restart_check callback is called once per frame to allow the application to request a restart/shut-
down of the data bus.

2.8 Clock configuration

For the I2S master and TDM components is it the application’s responsibility to set up and start the
internal clock used for the master clock before calling the component.

For example, the following code configures a clock to be based of an incoming data wire and starts the
clock:

configure_clock_src(mclk, p_mclk);
start_clock(mclk);

For more information on configuring clocks see the XMOS tools user guide.

Copyright 2015 XMOS Ltd. 13 www.xmos.com
XM007055



I2S (2.0.1)

3 API

3.1 Supporting types

Type i2s_mode_t

Description I2S mode.
This type is used to describe the I2S mode.

Values I2S_MODE_I2S
The LR clock transitions ahead of the data by one bit clock.

I2S_MODE_LEFT_JUSTIFIED
The LR clock and data are phase aligned.

Type i2s_config_t

Description I2S configuration structure.
This structure describes the configuration of an I2S bus.

Fields unsigned mclk_bclk_ratio
The ratio between the master clock and bit clock signals.

i2s_mode_t mode
The mode of the LR clock.

Type tdm_config_t

Description TDM configuration structure.
This structure describes the configuration of a TDM bus.

Fields int offset
The number of bits that the FSYNC signal transitions before the data.
Must be a value between 0 and 31.

unsigned sync_len
The length that the FSYNC signal stays high counted as ticks of the bit
clock.

unsigned channels_per_frame
The number of channels in a TDM frame. This must be a power of 2.

Copyright 2015 XMOS Ltd. 14 www.xmos.com
XM007055



I2S (2.0.1)

Type i2s_restart_t

Description Restart command type.
Restart commands that can be signalled to the I2S or TDM component.

Values I2S_NO_RESTART
Do not restart.

I2S_RESTART
Restart the bus (causes the I2S/TDM to stop and a new init callback to
occur allowing reconfiguration of the BUS).

I2S_SHUTDOWN
Shutdown. This will cause the I2S/TDM component to exit.

Copyright 2015 XMOS Ltd. 15 www.xmos.com
XM007055



I2S (2.0.1)

3.2 Creating an I2S instance

Function i2s_master

Description I2S master component.
This task performs I2S on the provided pins. It will perform callbacks over the
i2s_callback_if interface to get/receive data from the application using this compo-
nent.
The component performs I2S master so will drive the word clock and bit clock lines.

Type void
i2s_master(client i2s_callback_if i2s_i,

out buffered port:32 p_dout[num_out],
static const size_t num_out,
in buffered port:32 p_din[num_in],
static const size_t num_in,
out buffered port:32 p_bclk,
out buffered port:32 p_lrclk,
clock bclk,
const clock mclk)

Parameters i2s_i The I2S callback interface to connect to the application

p_dout An array of data output ports

num_out The number of output data ports

p_din An array of data input ports

num_in The number of input data ports

p_bclk The bit clock output port

p_lrclk The word clock output port

bclk A clock that will get configured for use with the bit clock

mclk The clock connected to the master clock frequency. Usually this should
be configured to be driven by an incoming master system clock.

Copyright 2015 XMOS Ltd. 16 www.xmos.com
XM007055



I2S (2.0.1)

Function i2s_slave

Description I2S slave component.
This task performs I2S on the provided pins. It will perform callbacks over the
i2s_callback_if interface to get/receive data from the application using this compo-
nent.
The component performs I2S slave so will expect the word clock and bit clock to be
driven externally.

Type void
i2s_slave(client i2s_callback_if i2s_i,

out buffered port:32 p_dout[num_out],
static const size_t num_out,
in buffered port:32 p_din[num_in],
static const size_t num_in,
in port p_bclk,
in buffered port:32 p_lrclk,
clock bclk)

Parameters i2s_i The I2S callback interface to connect to the application

p_dout An array of data output ports

num_out The number of output data ports

p_din An array of data input ports

num_in The number of input data ports

p_bclk The bit clock input port

p_lrclk The word clock input port

bclk A clock that will get configured for use with the bit clock

Copyright 2015 XMOS Ltd. 17 www.xmos.com
XM007055



I2S (2.0.1)

3.3 Creating an TDM instance

Function tdm_master

Description TDM master component.
This task performs TDM on the provided pins. It will perform callbacks over the
i2s_callback_if interface to get/receive data from the application using this compo-
nent.
The component performs as TDM master so will drive the fsync signal.

Type void
tdm_master(client interface i2s_callback_if tdm_i,

out buffered port:32 p_fsync,
out buffered port:32 p_dout[num_out],
size_t num_out,
in buffered port:32 p_din[num_in],
size_t num_in,
clock clk)

Parameters i2s_i The I2S callback interface to connect to the application

p_fsync The frame sync output port

p_dout An array of data output ports

num_out The number of output data ports

p_din An array of data input ports

num_in The number of input data ports

clk The clock connected to the bit/master clock frequency. Usually this
should be configured to be driven by an incoming master system clock.

Copyright 2015 XMOS Ltd. 18 www.xmos.com
XM007055



I2S (2.0.1)

Function i2s_tdm_master

Description I2S master + TDM master component.
This task performs I2S and TDM on the provided pins. The signals need to be syn-
chronized. It will perform callbacks over the i2s_callback_if interface to get/receive
data from the application using this component.
The component assumes that the bit clock of the TDM signal is the same as the master
clock of the I2S signal.
The component performs I2S master so will drive the word clock and bit clock lines.
It will also acts as TDM master and drives the fsync signal.

Type void
i2s_tdm_master(client interface i2s_callback_if i,

out buffered port:32 i2s_dout[num_i2s_out],
static const size_t num_i2s_out,
in buffered port:32 i2s_din[num_i2s_in],
static const size_t num_i2s_in,
out buffered port:32 i2s_bclk,
out buffered port:32 i2s_lrclk,
out buffered port:32 tdm_fsync,
out buffered port:32 tdm_dout[num_tdm_out],
size_t num_tdm_out,
in buffered port:32 tdm_din[num_tdm_in],
size_t num_tdm_in,
clock clk_bclk,
clock clk_mclk)

Continued on next page

Copyright 2015 XMOS Ltd. 19 www.xmos.com
XM007055



I2S (2.0.1)

Parameters i2s_i The I2S callback interface to connect to the application

i2s_dout An array of I2S data output ports

num_i2s_out
The number of I2S output data ports

i2s_din An array of I2S data input ports

num_i2s_in
The number of I2S input data ports

i2s_bclk The I2S bit clock output port

i2s_lrclk The I2S word clock output port

tdm_fsync The TDM frame sync output port

tdm_dout An array of TDM data output ports

num_tdm_out
The number of TDM output data ports

tdm_din An array of TDM data input ports

num_tdm_in
The number of TDM input data ports

bclk A clock that will get configured for use with the I2S bit clock

mclk The clock connected to the master clock frequency. Usually this should
be configured to be driven by an incoming master system clock. This
clock is also used as the TDM bit clock.

Copyright 2015 XMOS Ltd. 20 www.xmos.com
XM007055



I2S (2.0.1)

3.4 The I2S callback interface

Type i2s_callback_if

Description Interface representing callback events that can occur during the operation of the I2S
task.

Functions
Function init

Description I2S initialization event callback.
The I2S component will call this when it first initializes on first
run of after a restart.

Type void init(i2s_config_t & ?i2s_config,
tdm_config_t & ?tdm_config)

Parameters i2s_config
This structure is provided if the connected com-
ponent drives an I2S bus. The members of the
structure should be set to the required configura-
tion.

tdm_config
This structure is provided if the connected com-
ponent drives an TDM bus. The members of the
structure should be set to the required configura-
tion.

Function restart_check

Description I2S restart check callback.
This callback is called once per frame. The application must
return the required restart behaviour.

Type i2s_restart_t restart_check()

Returns The return value should be set to I2S_NO_RESTART,
I2S_RESTART or I2S_SHUTDOWN..

Continued on next page

Copyright 2015 XMOS Ltd. 21 www.xmos.com
XM007055



I2S (2.0.1)

Type i2s_callback_if (continued)

Function receive

Description Receive an incoming sample.
This callback will be called when a new sample is read in by the
I2S component.

Type void receive(size_t index, int32_t sample)

Parameters index The index of the sample in the frame.

sample The sample data as a signed 32-bit value. The
component may not use all 32 bits of the value
(for example, many I2S codecs are 24-bit), in
which case the bottom bits are ignored.

Function send

Description Request an outgoing sample.
This callback will be called when the I2S component needs a
new sample.

Type int32_t send(size_t index)

Parameters index The index of the requested sample in the frame.

Returns The sample data as a signed 32-bit value. The component may
not have 32-bits of accuracy (for example, many I2S codecs are
24-bit), in which case the bottom bits will be arbitrary values.

Copyright 2015 XMOS Ltd. 22 www.xmos.com
XM007055



I2S (2.0.1)

APPENDIX A - Known Issues

No known issues.

Copyright 2015 XMOS Ltd. 23 www.xmos.com
XM007055



I2S (2.0.1)

APPENDIX B - I2S library change log

B.1 2.0.1

• Performance improvement to TDM to allow 32x32 operation
• Bug fix to initialisation callback timing that could cause I2S lock up

B.2 2.0.0

• Major update to API from previous I2S components

Copyright © 2015, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2015 XMOS Ltd. 24 www.xmos.com
XM007055


	I2S/TDM Library
	External signal description
	I2S
	Connecting I2S signals to the xCORE device
	I2S master speeds and performance
	I2S slave speeds and performance

	TDM
	Connecting TDM signals to the xCORE device
	TDM speeds and performance

	Combined I2S and TDM
	Connecting synchronized I2S and TDM signals to the xCORE device
	Combined I2S and TDM speeds and performance


	Usage
	The I2S callback interface
	I2S master usage
	I2S slave usage
	TDM usage
	I2S + TDM usage
	Channel numbering
	I2S channel numbering
	TDM channel numbering
	I2S and TDM combined numbering

	Callback sequences
	Clock configuration

	API
	Supporting types
	Creating an I2S instance
	Creating an TDM instance
	The I2S callback interface

	Known Issues
	I2S library change log
	2.0.1
	2.0.0


